Issue
I try to determine the confusion_matrix of my neural network model which is written in python by using google tensorflow. By using this piece of code:
cm = tf.zeros(shape=[2,2], dtype=tf.int32)
for i in range(0, validation_data.shape[0], batch_size_validation):
batched_val_data = np.array(validation_data[i:i+batch_size_validation, :, :], dtype='float')
batched_val_labels = np.array(validation_labels[i:i+batch_size_validation, :], dtype='float')
batched_val_data = batched_val_data.reshape((-1, n_chunks, chunk_size))
_acc, _c, _p = sess.run([accuracy, correct, pred], feed_dict=({x:batched_val_data, y:batched_val_labels}))
#batched_val_labels.shape ==> (2048, 2)
#_p.shape ==> (2048, 2)
#this piece of code throws the error!
cm = tf.confusion_matrix(labels=batched_val_labels, predictions=_p)
I get the following error: ValueError: Shape (2, 2048, 2) must have rank 2
At least you should know that the array for the validation labels batched_val_labels is an one hot array. Can someone help me pls? Thanks in advance!
Solution
The problem was that I am using an one hot array. By following this instruction: Tensorflow confusion matrix using one-hot code
I changed this piece of code:
cm = tf.math.confusion_matrix(labels=batched_val_labels, predictions=_p)
into:
cm = tf.math.confusion_matrix(labels=tf.argmax(batched_val_labels, 1), predictions=tf.argmax(_p, 1))
Answered By - H. Senkaya
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.