Issue
This is a continuation of this problem. While I ironed out the problems I still get another issue. Would anyone be able to help me in this regards?
Looks like the predicted mask and actual mask have different sizes?
The output code is below:
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
/tmp/ipykernel_18/459131192.py in <module>
25 with torch.set_grad_enabled(phase == "train"):
26 y_pred = unet(x)
---> 27 loss = dsc_loss(y_pred, y_true)
28 running_loss += loss.item()
29
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
1108 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1109 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1110 return forward_call(*input, **kwargs)
1111 # Do not call functions when jit is used
1112 full_backward_hooks, non_full_backward_hooks = [], []
/tmp/ipykernel_18/3969884729.py in forward(self, y_pred, y_true)
6
7 def forward(self, y_pred, y_true):
----> 8 assert y_pred.size() == y_true.size()
9 y_pred = y_pred[:, 0].contiguous().view(-1)
10 y_true = y_true[:, 0].contiguous().view(-1)
AssertionError:
The below is the U-Net model. Please have a look.
unet_network.py:
#Unet
#https://github.com/mateuszbuda/brain-segmentation-pytorch
from collections import OrderedDict
import torch
import torch.nn as nn
class UNet(nn.Module):
def __init__(self, in_channels=3, out_channels=1, init_features=8):
super(UNet, self).__init__()
features = init_features
self.encoder1 = UNet._block(in_channels, features, name="enc1")
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder2 = UNet._block(features, features * 2, name="enc2")
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder3 = UNet._block(features * 2, features * 4, name="enc3")
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.encoder4 = UNet._block(features * 4, features * 8, name="enc4")
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.bottleneck = UNet._block(features * 8, features * 16, name="bottleneck")
self.upconv4 = nn.ConvTranspose2d(
features * 16, features * 8, kernel_size=2, stride=2
)
self.decoder4 = UNet._block((features * 8) * 2, features * 8, name="dec4")
self.upconv3 = nn.ConvTranspose2d(
features * 8, features * 4, kernel_size=2, stride=2
)
self.decoder3 = UNet._block((features * 4) * 2, features * 4, name="dec3")
self.upconv2 = nn.ConvTranspose2d(
features * 4, features * 2, kernel_size=2, stride=2
)
self.decoder2 = UNet._block((features * 2) * 2, features * 2, name="dec2")
self.upconv1 = nn.ConvTranspose2d(
features * 2, features, kernel_size=2, stride=2
)
self.decoder1 = UNet._block(features * 2, features, name="dec1")
self.conv = nn.Conv2d(
in_channels=features, out_channels=out_channels, kernel_size=1
)
def forward(self, x):
enc1 = self.encoder1(x)
enc2 = self.encoder2(self.pool1(enc1))
enc3 = self.encoder3(self.pool2(enc2))
enc4 = self.encoder4(self.pool3(enc3))
bottleneck = self.bottleneck(self.pool4(enc4))
dec4 = self.upconv4(bottleneck)
dec4 = torch.cat((dec4, enc4), dim=1)
dec4 = self.decoder4(dec4)
dec3 = self.upconv3(dec4)
dec3 = torch.cat((dec3, enc3), dim=1)
dec3 = self.decoder3(dec3)
dec2 = self.upconv2(dec3)
dec2 = torch.cat((dec2, enc2), dim=1)
dec2 = self.decoder2(dec2)
dec1 = self.upconv1(dec2)
dec1 = torch.cat((dec1, enc1), dim=1)
dec1 = self.decoder1(dec1)
return torch.sigmoid(self.conv(dec1))
@staticmethod
def _block(in_channels, features, name):
return nn.Sequential(
OrderedDict(
[
(
name + "conv1",
nn.Conv2d(
in_channels=in_channels,
out_channels=features,
kernel_size=3,
padding=1,
bias=False,
),
),
(name + "norm1", nn.BatchNorm2d(num_features=features)),
(name + "relu1", nn.ReLU(inplace=True)),
(
name + "conv2",
nn.Conv2d(
in_channels=features,
out_channels=features,
kernel_size=3,
padding=1,
bias=False,
),
),
(name + "norm2", nn.BatchNorm2d(num_features=features)),
(name + "relu2", nn.ReLU(inplace=True)),
]
)
)
Thanks & Best Regards
Schroter Michael
Solution
Your error stems from the difference in number of channels between the prediction (pred=torch.Size([5, 1, 512, 512])
) and the target (y_true=torch.Size([5, 3, 512, 512])
).
For a target with 3 channels, you need your pred
to have three channels as well. That is, you need to configure your UNet
to have out_channels=3
instead of the default of 1.
Answered By - Shai
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.