Issue
I found a training dataset which is a set of tfrecords files,im trying to convert them into images but with no results,is it possible to convert them to images ?
Solution
To find out what is inside a tf.record
use tf.data.TFRecordDataset
and tf.train.Example
:
import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
ds = tf.data.TFRecordDataset(['/content/sv_0_128.tfrecords'])
for batch in ds.take(1):
example = tf.train.Example()
example.ParseFromString(batch.numpy())
print(example)
To parse the records, use tf.data.TFRecordDataset
with tf.io.parse_single_example
and tf.io.parse_tensor
:
def decode_fn(record_bytes):
return tf.io.parse_single_example(
record_bytes,
{"air_temperature_at_2_metres_1hour_Maximum": tf.io.FixedLenFeature([], dtype=tf.string),
"air_temperature_at_2_metres_1hour_Minimum": tf.io.FixedLenFeature([], dtype=tf.string),
"elevation": tf.io.FixedLenFeature([], dtype=tf.string),
"landcover": tf.io.FixedLenFeature([], dtype=tf.string),
"ndvi": tf.io.FixedLenFeature([], dtype=tf.string),
"todays_fires": tf.io.FixedLenFeature([], dtype=tf.string),
"todays_frp": tf.io.FixedLenFeature([], dtype=tf.string),
"tomorrows_fires": tf.io.FixedLenFeature([], dtype=tf.string)}
)
for batch in ds.map(decode_fn).take(1):
f, axarr = plt.subplots(2,4)
rows = np.repeat([0, 1], 4)
cols = np.repeat([[0, 1, 2, 3]], 2, axis=0).ravel()
for v, r, c in zip(batch.values(), rows, cols):
axarr[r,c].imshow(tf.io.parse_tensor(v, out_type=tf.float32), cmap='gray')
Also check the source code of Satellite VU.
Answered By - AloneTogether
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.