Issue
I want to create a table and fill missing values with my data
The data look like this:
{'A': 0, 'C': 0, 'D': 0, 'E': 0, 'F': 0, 'G': 0}
{'A': 0, 'B': 0, 'C': 0, 'D': 0, 'E': 0, 'F': 0}
I want to convert the data into pandas data frame with missing values
A B C D E F G
1 0 na 0 0 0 0 0
2 0 0 0 0 0 0 na
I could manually give the missing values (using the below code) and then convert it into data frame. Is there a better way to fill the missing values and convert it into data frame
import pandas as pd
s = (( 0, 'na', 0, 0, 0, 0, 0),
( 0, 0, 0, 0, 0, 0, 'na'))
print (pd.DataFrame(list(s)))
print (pd.DataFrame(list(s), columns=['A', 'B', 'C', 'D', 'E', 'F','G'], index=[1,2]))
Thanks
Solution
If pass list of DataFrame then need only sorting columns names:
L = [ {'A': 0, 'C': 0, 'D': 0, 'E': 0, 'F': 0, 'G': 0},
{'A': 0, 'B': 0, 'C': 0, 'D': 0, 'E': 0, 'F': 0}]
print (pd.DataFrame(L).sort_index(axis=1))
A B C D E F G
0 0 NaN 0 0 0 0 0.0
1 0 0.0 0 0 0 0 NaN
Answered By - jezrael
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.