Issue
I want to learn only the first layer by transfer learning and fix(freeze) the parameters of the other layers.
but I was required to **requires_grad = True **. How can I solve this problem? The following is a description of what we tried and the errors we encountered.
from efficientnet_pytorch import EfficientNet
model_b0 = EfficientNet.from_pretrained('efficientnet-b0')
num_ftrs = model_b0._fc.in_features
model_b0._fc = nn.Linear(num_ftrs, 10)
for param in model_b0.parameters():
param.requires_grad = False
last_layer = list(model_b0.children())[-1]
print(f'except last layer: {last_layer}')
for param in last_layer.parameters():
param.requires_grad = True
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_b0.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_b0 = train_model(model_b0, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=3)
if I change requires_grad = True , above code can run.
and error is
4 optimizer_ft = optim.SGD(model_b7.parameters(), lr=0.001, momentum=0.9)
5 exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
----> 7 model_b0 = train_model(model_b7, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=15)
Cell In [69], line 43, in train_model(model, criterion, optimizer, scheduler, num_epochs)
41 loss = criterion(outputs, labels)
---> 43 loss.backward()
44 optimizer.step()
\site-packages\torch\_tensor.py:396, in Tensor.backward(self, gradient, retain_graph, create_graph, inputs)
394 create_graph=create_graph,
395 inputs=inputs)
--> 396 torch.autograd.backward(self, gradient, retain_graph, create_graph, inputs=inputs)
\site-packages\torch\autograd\__init__.py:173, in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
172 # calls in the traceback and some print out the last line
--> 173 Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
174 tensors, grad_tensors_, retain_graph, create_graph, inputs,
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
thank you for read!
Solution
There are several possible causes of this problem:
The tensor you passed in does not have the
requires_grad=True
.Make sure your new
Variable
is with requires_grad = True:
var_xs_h = Variable(xs_h.data, requires_grad=True)
- The
requires_grad
: Freeze last layers of the model
As mentioned by the Pytorch forum moderator ptrblck:
If you are setting requires_grad = False for all parameters, the error message is expected, as Autograd won’t be able to calculate any gradients, since no parameter requires them.
Which I think your case is similar to the latter one, you can read the second post.
Another suggestion by ptrblck in debugging.
# standard use case
x = torch.randn(1, 1)
print(x.requires_grad)
# > False
lin = nn.Linear(1, 1)
out = lin(x)
print(out.grad_fn)
# > <AddmmBackward0 object at 0x7fcea08c5610>
out.backward()
print(lin.weight.grad)
# > tensor([[-0.9785]])
print(x.grad)
# > None
# input requires grad
x = torch.randn(1, 1, requires_grad=True)
print(x.requires_grad)
# > True
lin = nn.Linear(1, 1)
out = lin(x)
print(out.grad_fn)
# > <AddmmBackward0 object at 0x7fcea08d4640>
out.backward()
print(lin.weight.grad)
# > tensor([[1.6739]])
print(x.grad)
# >tensor([[0.0300]])
Answered By - Angus
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.