Issue
I am trying to implement a neural net in PyTorch but it doesn't seem to work. The problem seems to be in the training loop. I've spend several hours into this but can't get it right. Please help, thanks.
I haven't added the data preprocessing parts.
# importing libraries
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import torch.nn.functional as F
# get x function (dataset related stuff)
def Getx(idx):
sample = samples[idx]
vector = Calculating_bottom(sample)
vector = torch.as_tensor(vector, dtype = torch.float64)
return vector
# get y function (dataset related stuff)
def Gety(idx):
y = np.array(train.iloc[idx, 4], dtype = np.float64)
y = torch.as_tensor(y, dtype = torch.float64)
return y
# dataset
class mydataset(Dataset):
def __init__(self):
super().__init__()
def __getitem__(self, index):
x = Getx(index)
y = Gety(index)
return x, y
def __len__(self):
return len(train)
dataset = mydataset()
# sample dataset value
print(dataset.__getitem__(0))
(tensor([ 5., 5., 8., 14.], dtype=torch.float64), tensor(-0.3403, dtype=torch.float64))
# data-loader
dataloader = DataLoader(dataset, batch_size = 1, shuffle = True)
# nn architecture
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(4, 4)
self.fc2 = nn.Linear(4, 2)
self.fc3 = nn.Linear(2, 1)
def forward(self, x):
x = x.float()
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net()
# device
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device)
# hyper-parameters
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
# training loop
for epoch in range(5):
for batch in dataloader:
# unpacking
x, y = batch
x.to(device)
y.to(device)
# reset gradients
optimizer.zero_grad()
# forward propagation through the network
out = model(x)
# calculate the loss
loss = criterion(out, y)
# backpropagation
loss.backward()
# update the parameters
optimizer.step()
Error:
/opt/conda/lib/python3.7/site-packages/torch/nn/modules/loss.py:446: UserWarning: Using a target size (torch.Size([1])) that is different to the input size (torch.Size([1, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
return F.mse_loss(input, target, reduction=self.reduction)
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-18-3f68fcee9ff3> in <module>
20
21 # backpropagation
---> 22 loss.backward()
23
24 # update the parameters
/opt/conda/lib/python3.7/site-packages/torch/tensor.py in backward(self, gradient, retain_graph, create_graph)
219 retain_graph=retain_graph,
220 create_graph=create_graph)
--> 221 torch.autograd.backward(self, gradient, retain_graph, create_graph)
222
223 def register_hook(self, hook):
/opt/conda/lib/python3.7/site-packages/torch/autograd/__init__.py in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables)
130 Variable._execution_engine.run_backward(
131 tensors, grad_tensors_, retain_graph, create_graph,
--> 132 allow_unreachable=True) # allow_unreachable flag
133
134
RuntimeError: Found dtype Double but expected Float
Solution
You need the data type of the data to match the data type of the model.
Either convert the model to double (recommended for simple nets with no serious performance problems such as yours)
# nn architecture
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(4, 4)
self.fc2 = nn.Linear(4, 2)
self.fc3 = nn.Linear(2, 1)
self.double()
or convert the data to float.
class mydataset(Dataset):
def __init__(self):
super().__init__()
def __getitem__(self, index):
x = Getx(index)
y = Gety(index)
return x.float(), y.float()
Answered By - Gulzar
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.