Issue
Beginner question incoming.
I have a dataframe derived from an excel file with a column that I will call "input". In this column are floats (e.g. 7.4, 8.1, 2.2,...). However, there are also some wrong values such as strings (which are easy to filter out) and, what I find difficult, single instances of "." or "..". I would like to clean the column to generate only numeric float values.
I have used this approach for other columns, but cannot do so here because if I get rid of the "." instances, my floats will be messed up:
for col in [col for col in new_df.columns if col.startswith("input")]:
new_df[col] = new_df[col].str.replace(r',| |\-|\^|\+|#|j|0|.', '', regex=True)
new_df[col] = pd.to_numeric(new_df[col], errors='raise')
I have also tried the following, but it then replaces every value in the column with None:
for index, row in new_df.iterrows():
col_input = row['input']
if re.match(r'^-?\d+(?:.\d+)$', str(col_input)) is None:
new_df["input"] = None
How do I get rid of the dots?
Thanks!
Solution
You can simply use pandas.to_numeric
and pass errors='coerce'
without the loop :
from io import StringIO
import pandas as pd
s = """input
7.4
8.1
2.2
foo
foo.bar
baz/foo"""
df = pd.read_csv(StringIO(s))
df['input'] = pd.to_numeric(df['input'], errors='coerce')
# Outputs :
print(df)
input
0 7.4
1 8.1
2 2.2
3 NaN
4 NaN
5 NaN
df.dropna(inplace=True)
print(df)
input
0 7.4
1 8.1
2 2.2
If you need to clean up multiple mixed columns, use :
cols = ['input', ...] # put here the name of the columns concerned
df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')
df.dropna(subset=cols, inplace=True)
Answered By - abokey
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.