Issue
How do I use tf.data.experimental.make_csv_dataset
with CSV files containing time series data?
building_dataset = tf.data.experimental.make_csv_dataset(file_pattern=csv_file,
batch_size=5,num_epochs=1, shuffle=False,select_columns=feature_columns)
Solution
It is assumed that the CSV file is already sorted w.r.t. time. First, read the CSV file using:
building_dataset = tf.data.experimental.make_csv_dataset(file_pattern=csv_file,
batch_size=5,num_epochs=1, shuffle=False,select_columns=feature_columns)
Then define a pack_features_vector
to convert to a features vector and unbatch using flat_map(). The tensors are also cast to float32.
def pack_features_vector(features):
"""Pack the features into a single array."""
features = tf.stack([tf.cast(x,tf.float32) for x in list(features.values())], axis=1)
return features
building_dataset = building_dataset.map(pack_features_vector)
building_dataset = building_dataset.flat_map(lambda x: tf.data.Dataset.from_tensor_slices(x))
for feature in building_dataset.take(1):
print('Stacked tensor:',feature)
Then use the window and flat map method.
building_dataset = building_dataset.window(window_size, shift=1, drop_remainder=True)
building_dataset = building_dataset.flat_map(lambda window: window.batch(window_size))
Then use map method to separate features and labels.
building_dataset = building_dataset.map(lambda window: (window[:,:-1], window[-1:,-1]))
for feature, label in building_dataset.take(5):
print(feature.shape)
print('feature:',feature[:,0:4])
print('label:',label)
Finally create batches using batch() and use as inputs to model training.
building_dataset = building_dataset.batch(32)
Answered By - siby
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.