Issue
from sklearn import datasets
import pandas as pd
import numpy as np
import torch
from torch import nn
#loading the dataset
(data, target) = datasets.load_diabetes(as_frame=True,return_X_y=True) #with the as_frame=True data: pd.DataFrame
# converting data,target to tensors
data = torch.tensor(data.values,dtype=torch.float)
target = torch.tensor(target.values,dtype=torch.float)
#split the data 80% train 20% testing
a = 0.8
train_data , train_target = data[:int(a*len(data))] , data[:int(a*len(data))]
test_data , test_target = data[int(a*len(data)):] , data[int(a*len(data)):]
#constructing the model
# for this dataset dimentionality is 10 so the in_features will be 10
model = nn.Sequential(
nn.Linear(in_features=10, out_features=128),
nn.Linear(in_features=128, out_features=128),
nn.Linear(in_features=128, out_features=1)
)
#loss fn , optimizer
loss_fn = nn.L1Loss() #binary cross entropy
optimizer = torch.optim.SGD(params = model.parameters(),lr=0.001) #stochastic gradient descent
#training loop
epochs = 1000
for epoch in range(epochs):
#1. make prediction
model.train()
train_pred = model(train_data)
loss = loss_fn(train_pred, train_target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
with torch.inference_mode():
test_pred = model(test_data)
loss_test = loss_fn(test_pred, test_target)
if epoch%(epochs//min(10,epochs))==0: print(f"{epoch} - training loss: {round(float(loss),4)} | test loss: {round(float(loss_test),4)}")- training loss: {loss} | test loss: {loss_test}")
Output
0 - training loss: 0.0837 | test loss: 0.0806
100 - training loss: 0.0433 | test loss: 0.0431
200 - training loss: 0.0426 | test loss: 0.0425
300 - training loss: 0.042 | test loss: 0.0419
400 - training loss: 0.0414 | test loss: 0.0414
500 - training loss: 0.0408 | test loss: 0.0408
600 - training loss: 0.0403 | test loss: 0.0403
700 - training loss: 0.0398 | test loss: 0.0398
800 - training loss: 0.0393 | test loss: 0.0394
900 - training loss: 0.0388 | test loss: 0.0389
Solution
First, as it was mentioned in the comments, you probably meant:
train_data, train_target = data[:int(a*len(data))] , target[:int(a*len(data))]
test_data, test_target = data[int(a*len(data)):] , target[int(a*len(data)):]
Next, your target size is not consistent with the output size (this should give a warning). Using
loss = loss_fn(train_pred, train_target.unsqueeze(1))
and
loss_test = loss_fn(test_pred, test_target.unsqueeze(1))
should give you some traction.
Answered By - dx2-66
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.