Issue
I am using tf.keras version 2.5.0.
I defined my sequence of layers for a regression problem as a function, to be wrapped using the KerasRegressor class. This was done to allow me to perform a RandomizedSearchCV.
import os
import tensorflow as tf
import tensorflow_addons as tfa
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.layers import Input, InputLayer
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import RandomizedSearchCV
def build_model(n_hidden = 1, n_neurons = 32, input_shape = (X_train.shape[1],), dropout = 0):
model = Sequential()
model.add(InputLayer(input_shape = input_shape))
for i in range(n_hidden):
model.add(Dense(n_neurons, activation = 'relu'))
model.add(Dropout(dropout))
model.add(Dense(1))
model.compile(loss = 'mean_squared_error', optimizer = 'adam', metrics = [tfa.metrics.RSquare(y_shape=(1,))])
return model
keras_reg = KerasRegressor(build_fn = build_model)
history = keras_reg.fit(X_train, y_train, epochs = 200, batch_size = 64,
validation_data = (X_valid, y_valid),
callbacks = callbacks)
mse_test = keras_reg.score(X_test, y_test)
The code above works. However, when I try to define another KerasRegressor called keras_reg_A, and override the defaults for build_model, I get the error "The first argument to Layer.call
must always be passed" (I left the callbacks out on purpose)
build_model_A = build_model(n_hidden = 2, n_neurons = 64, input_shape = (X_train.shape[1],), dropout = 0)
keras_reg_A = KerasRegressor(build_model_A)
history_A = keras_reg_A.fit(X_train, y_train, epochs = 200, batch_size = 64,
validation_data = (X_valid, y_valid))
mse_test = keras_reg_A.score(X_test, y_test)
Can someone please explain why this is?
Solution
The build_fn
argument of KerasRegressor
expects a function, not a tf.keras.Model
. If you need to override the default parameter of build_model
, you can pass them directly to the constructor of the KerasRegressor
.
For example:
keras_reg = KerasRegressor(build_fn=build_model, n_hidden=2, n_neurons=32, dropout=0.5)
An other option is to define a new function, for example using a lambda
:
build_model_override = lambda: build_model(n_hiddens=2)
keras_reg = KerasRegressor(build_fn=build_model_override)
Answered By - Lescurel
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.