Issue
I have the date frame with the following structure:
df = pd.DataFrame({'GROUP_ID': np.random.randint(1, 7, size=100),
'VALUES': np.random.randint(0, 50, size=100)})
df['THRESHOLD'] = df['GROUP_ID']*5
df = df[['GROUP_ID','VALUES','THRESHOLD']]
df.sort_values(by='GROUP_ID', inplace=True)
(this one is just for example)
A column THRESHOLD is actually a percentile (in %) for every group. And I need to add a column 'PERCENTILE' in which there should be a numerical value of percentile for values in each group.
I was trying to use groupby
and apply
, but I don't get how to pass values of THRESHOLD column to parameter q
in quantile\percentile
function.
Solution
Create dictionary and map treshold with x.name
for GROUP_ID
passed to function transform
for new column with quantile
, only necessary treshold between 0 and 1:
np.random.seed(152)
df = pd.DataFrame({'GROUP_ID': np.random.randint(1, 7, size=100),
'VALUES': np.random.randint(0, 50, size=100)})
df['THRESHOLD'] = df['GROUP_ID'] / 15
df = df[['GROUP_ID','VALUES','THRESHOLD']]
df.sort_values(by='GROUP_ID', inplace=True)
d = dict(zip(df['GROUP_ID'], df['THRESHOLD']))
df['new'] = df.groupby('GROUP_ID')['VALUES'].transform(lambda x: x.quantile(d[x.name]))
print (df.head(20))
GROUP_ID VALUES THRESHOLD new
23 1 17 0.066667 7.733333
53 1 9 0.066667 7.733333
39 1 43 0.066667 7.733333
57 1 15 0.066667 7.733333
36 1 47 0.066667 7.733333
59 1 17 0.066667 7.733333
28 1 4 0.066667 7.733333
63 1 33 0.066667 7.733333
18 1 12 0.066667 7.733333
12 1 27 0.066667 7.733333
47 1 43 0.066667 7.733333
81 1 45 0.066667 7.733333
91 1 45 0.066667 7.733333
5 1 8 0.066667 7.733333
83 1 26 0.066667 7.733333
61 2 39 0.133333 4.200000
95 2 33 0.133333 4.200000
44 2 22 0.133333 4.200000
42 2 34 0.133333 4.200000
41 2 48 0.133333 4.200000
Answered By - jezrael
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.