Issue
I have a dataframe like so:
index date symbol stock_id open high low close volume vwap
0 0 2021-10-11 BVN 13 7.69 7.98 7.5600 7.61 879710 7.782174
1 1 2021-10-12 BVN 13 7.67 8.08 7.5803 8.02 794436 7.967061
2 2 2021-10-13 BVN 13 8.12 8.36 8.0900 8.16 716012 8.231286
3 3 2021-10-14 BVN 13 8.26 8.29 8.0500 8.28 586091 8.185899
4 4 2021-10-15 BVN 13 8.18 8.44 8.0600 8.44 1278409 8.284539
... ... ... ... ... ... ... ... ... ... ...
227774 227774 2022-10-04 ERIC 11000 6.27 6.32 6.2400 6.29 14655189 6.280157
227775 227775 2022-10-05 ERIC 11000 6.17 6.31 6.1500 6.29 10569193 6.219965
227776 227776 2022-10-06 ERIC 11000 6.20 6.25 6.1800 6.22 7918812 6.217198
227777 227777 2022-10-07 ERIC 11000 6.17 6.19 6.0800 6.10 9671252 6.135976
227778 227778 2022-10-10 ERIC 11000 6.13 6.15 6.0200 6.04 6310661 6.066256
[227779 rows x 10 columns]
And then a function to return a boolean mask on whether or not the df is consolidating inside of a range:
def is_consolidating(df, window=2, minp=2, percentage=0.95):
rolling_min = pd.Series(df['close']).rolling(window=window, min_periods=minp).min()
rolling_max = pd.Series(df['close']).rolling(window=window, min_periods=minp).max()
consolidation = np.where( (rolling_min / rolling_max) >= percentage, True, False)
return consolidation
Which I then call like:
df['t'] = df.groupby("stock_id").apply(is_consolidating)
The problem is when I print the df I am getting NaN for the values of my new column:
dan@danalgo:~/Documents/code/wolfhound$ python3 add_indicators_daily.py
index date symbol stock_id open high low close volume vwap t
0 0 2021-10-11 BVN 13 7.69 7.98 7.5600 7.61 879710 7.782174 NaN
1 1 2021-10-12 BVN 13 7.67 8.08 7.5803 8.02 794436 7.967061 NaN
2 2 2021-10-13 BVN 13 8.12 8.36 8.0900 8.16 716012 8.231286 NaN
3 3 2021-10-14 BVN 13 8.26 8.29 8.0500 8.28 586091 8.185899 NaN
4 4 2021-10-15 BVN 13 8.18 8.44 8.0600 8.44 1278409 8.284539 NaN
... ... ... ... ... ... ... ... ... ... ... ...
227774 227774 2022-10-04 ERIC 11000 6.27 6.32 6.2400 6.29 14655189 6.280157 NaN
227775 227775 2022-10-05 ERIC 11000 6.17 6.31 6.1500 6.29 10569193 6.219965 NaN
227776 227776 2022-10-06 ERIC 11000 6.20 6.25 6.1800 6.22 7918812 6.217198 NaN
227777 227777 2022-10-07 ERIC 11000 6.17 6.19 6.0800 6.10 9671252 6.135976 NaN
227778 227778 2022-10-10 ERIC 11000 6.13 6.15 6.0200 6.04 6310661 6.066256 NaN
[227779 rows x 11 columns]
Full code:
import pandas as pd
from IPython.display import display
import sqlite3 as sql
import numpy as np
conn = sql.connect('allStockData.db')
# get everything inside daily_ohlc and add to a dataframe
df = pd.read_sql_query("SELECT * from daily_ohlc_init", conn)
def is_consolidating(df, window=2, minp=2, percentage=0.95):
rolling_min = pd.Series(df['close']).rolling(window=window, min_periods=minp).min()
rolling_max = pd.Series(df['close']).rolling(window=window, min_periods=minp).max()
consolidation = np.where( (rolling_min / rolling_max) >= percentage, True, False)
return consolidation
df['t'] = df.groupby("stock_id").apply(is_consolidating)
print(df)
df.to_sql('daily_ohlc_init_with_indicators', if_exists='replace', con=conn, index=True)
Solution
You could do it like this:
def is_consolidating(grp, window=2, minp=2, percentage=0.95):
rolling_min = pd.Series(grp).rolling(window=window, min_periods=minp).min()
rolling_max = pd.Series(grp).rolling(window=window, min_periods=minp).max()
consolidation = np.where( (rolling_min / rolling_max) >= percentage, True, False)
return pd.Series(consolidation, index=grp.index)
df['t'] = df.groupby("stock_id")['close'].apply(is_consolidating)
print(df)
Output (part of it):
volume vwap t
0 879710 7.782174 False
1 794436 7.967061 False
2 716012 8.231286 True
3 586091 8.185899 True
4 1278409 8.284539 True
227774 14655189 6.280157 False
227775 10569193 6.219965 True
227776 7918812 6.217198 True
227777 9671252 6.135976 True
227778 6310661 6.066256 True
Answered By - Rabinzel
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.