Issue
I am trying to add a date to my nested loop without creating another loop.
End
is my list of dates and end(len) is equal to len(year).
Alternatively I can add the date to the dataframe (data1
) is that a better solution?
Data-Sample
state_list = ['A','B','C','D','E'] #possible states
data1 = pd.DataFrame({"cust_id": ['x111','x112'], #customer data
"state": ['B','E'],
"amount": [1000,500],
"year":[3,2],
"group":[10,10],
"loan_rate":[0.12,0.13]})
data1['state'] = pd.Categorical(data1['state'],
categories=state_list,
ordered=True).codes
lookup1 = pd.DataFrame({'year': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'lim %': [0.1, 0.1, 0.1, 0.1, 0.1,0.1, 0.1, 0.1, 0.1, 0.1]}).set_index(['year'])
matrix_data = np.arange(250).reshape(10,5,5) #3d matrix by state(A-E) and year(1-10)
end = pd.Timestamp(year=2021, month=9, day=1) # creating a list of dates
df = pd.DataFrame({"End": pd.date_range(end, periods=10, freq="M")})
df['End']=df['End'].dt.day
End=df.values
Calculation
results={}
for cust_id, state, amount, start, group, loan_rate in data1.itertuples(name=None, index=False):
res = [amount * matrix_data[start-1, state, :]]
for year in range(start+1, len(matrix_data)+1,):
res.append(lookup1.loc[year].iat[0] * np.array(res[-1]))
res.append(res[-1] * (loan_rate)) # *(End/365) # I want to iterate here
res.append(res[-1]+ 100)
res.append(multi_dot([res[-1],matrix_data[year-1]]))
results[cust_id] = res
example of expected output:
{'x111': [array([55000, 56000, 57000, 58000, 59000]),
array([5500., 5600., 5700., 5800., 5900.]),
array([56.055, 57.074, 58.093, 59.112., 60.132.]),
line 3 - calculation example ((5500 * 0.12) * (30/365))
array([5500., 5600., 5700., 5800., 5900.])- the entire line will be multiplied by loan_rate and (30/365)
Solution
If I understand correctly, the question boils down to this:
There is an
- array of values, e.g.
vals = np.array([5500., 5600., 5700., 5800., 5900.]) # == res[-1] from the example
- a constant loan rate, e.g.
loan_rate = 0.12 # ... to continue with the example above
- and the goal is to perform a calculation ...
value * loan_rate * (end_date/365)
... for each value where the end_date
comes from the array End
(array([[30], [31], ..., [30]])
).
- So for example if year == 1:
- 5500 * 0.12 * 30/365
- 5600 * 0.12 * 30/365
- 5700 * 0.12 * 30/365
- ...
- if year == 2: then the end_date is 31
Then you could just look up the end date depending on the year. Note the use of year - 1
as end_dates
is 0 indexed and the counting of years seems to start with 1.
end_dates = End.reshape(-1) # array([30, 31, 30, 31, 31, 28, 31, 30, 31, 30]); just to simplify access to the end date values
results={}
for cust_id, state, amount, start, group, loan_rate in data1.itertuples(name=None, index=False):
res = [amount * matrix_data[start-1, state, :]]
for year in range(start+1, len(matrix_data)+1,):
res.append(lookup1.loc[year].iat[0] * np.array(res[-1]))
res.append(res[-1] * loan_rate * end_dates[year-1]/365) # year - 1 here
res.append(res[-1]+ 100)
res.append(np.linalg.multi_dot([res[-1],matrix_data[year-1]]))
results[cust_id] = res # no need to store the results of a customer multiple times; see comment below question
Answered By - rosa b.
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.