Issue
I have the DataFrame:
df =
sample_type observed_data
A [0.2, 0.5, 0.17, 0.1]
A [0.9, 0.3, 0.24, 0.5]
A [0.9, 0.5, 0.6, 0.39]
B [0.01, 0.07, 0.15, 0.26]
B [0.08, 0.14, 0.32, 0.58]
B [0.01, 0.16, 0.42, 0.41]
where the data type in the observed_data
column is np.array
. What's the easiest and most efficient way of plotting each of the numpy arrays overlayed on the same plot using matplotlib
and/or plotly
and showing A and B as separate colors or line types (eg. dashed, dotted, etc.)?
Solution
You can use this...
df = pd.DataFrame({'sample_type' : ['A', 'A', 'A', 'B', 'B', 'B'],
'observed_data' : [[0.2, 0.5, 0.17, 0.1], [0.9, 0.3, 0.24, 0.5], [0.9, 0.5, 0.6, 0.39],
[0.01, 0.07, 0.15, 0.26], [0.08, 0.14, 0.32, 0.58], [0.01, 0.16, 0.42, 0.41]]})
for ind, cell in df['observed_data'].iteritems():
if len(cell) > 0:
if df.loc[ind,'sample_type'] == 'A':
plotted = plt.plot(np.linspace(0,1,len(cell)), cell, color='blue', marker = 'o', linestyle = '-.')
else:
plotted = plt.plot(np.linspace(0,1,len(cell)), cell, color='red', marker = '*', linestyle = ':')
plt.show()
Answered By - Redox
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.