Issue
I have a huge data frame.
I am using a for loop in the below sample code:
for i in range(1, len(df_A2C), 1):
A2C_TT= df_A2C.loc[(df_A2C['TO_ID'] == i)].sort_values('DURATION_H').head(1)
if A2C_TT.size > 0:
print (A2C_TT)
This is working fine but I want to use df.iterrows() since it will help me to automaticall avoid empty frame issues.
I want to iterate through TO_ID
and looking for minimum values
accordingly.
How should I replace my classical i
loop counter with df.iterrows()?
Sample Data:
FROM_ID TO_ID DURATION_H DIST_KM
1 7 0.528555556 38.4398
2 26 0.512511111 37.38515
3 71 0.432452778 32.57571
4 83 0.599486111 39.26188
5 98 0.590516667 35.53107
6 108 1.077794444 76.79874
7 139 0.838972222 58.86963
8 146 1.185088889 76.39174
9 158 0.625872222 45.6373
10 208 0.500122222 31.85239
11 209 0.530916667 29.50249
12 221 0.945444444 62.69099
13 224 1.080883333 66.06291
14 240 0.734269444 48.1778
15 272 0.822875 57.5008
16 349 1.171163889 76.43536
17 350 1.080097222 71.16137
18 412 0.503583333 38.19685
19 416 1.144961111 74.35502
Solution
here is one way about it
# run the loop for as many unique TO_ID you have
# instead of iterrows, which runs for all the DF or running to the size of DF
for idx in np.unique(df['TO_ID']):
A2C_TT= df.loc[(df['TO_ID'] == idx)].sort_values('DURATION_H').head(1)
print (A2C_TT)
ROM_ID TO_ID DURATION_H DIST_KM
498660 39 7 0.434833 25.53808
here is another way about it
df.loc[df['DURATION_H'].eq(df.groupby('TO_ID')['DURATION_H'].transform(min))]
ROM_ID TO_ID DURATION_H DIST_KM
498660 39 7 0.434833 25.53808
Answered By - Naveed
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.