Issue
I have read through the pandas guide, especially merge
and join
sections, but still can not figure it out.
Basically, this is what I want to do: Let's say we have two data frames:
left = pd.DataFrame(
{ "key": ["K0", "K1", "K2", "K3"],
"A": ["A0", "A1", "A2", "A3"],
"C": ["B0", "B1", np.nan, np.nan]})
right = pd.DataFrame(
{ "key": ["K2"],
"A": ["A8"],
"D": ["D3"]})
I want to merge them based off on "key" and update the values, filling where necessary and replacing old values if there are any. So it should look like this:
key A C D
0 K0 A0 B0 NaN
1 K1 A1 B1 NaN
2 K2 A8 NaN D3
3 K3 A3 NaN NaN
Solution
You can use combine_first
with set_index
to accomplish your goal here.
right.set_index('key').combine_first(left.set_index('key')).reset_index()
Output:
key A C D
0 K0 A0 B0 NaN
1 K1 A1 B1 NaN
2 K2 A8 NaN D3
3 K3 A3 NaN NaN
Answered By - Scott Boston
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.