Issue
I have a Python dictionary like the following:
{u'2012-06-08': 388,
u'2012-06-09': 388,
u'2012-06-10': 388,
u'2012-06-11': 389,
u'2012-06-12': 389,
u'2012-06-13': 389,
u'2012-06-14': 389,
u'2012-06-15': 389,
u'2012-06-16': 389,
u'2012-06-17': 389,
u'2012-06-18': 390,
u'2012-06-19': 390,
u'2012-06-20': 390,
u'2012-06-21': 390,
u'2012-06-22': 390,
u'2012-06-23': 390,
u'2012-06-24': 390,
u'2012-06-25': 391,
u'2012-06-26': 391,
u'2012-06-27': 391,
u'2012-06-28': 391,
u'2012-06-29': 391,
u'2012-06-30': 391,
u'2012-07-01': 391,
u'2012-07-02': 392,
u'2012-07-03': 392,
u'2012-07-04': 392,
u'2012-07-05': 392,
u'2012-07-06': 392}
The keys are Unicode dates and the values are integers. I would like to convert this into a pandas dataframe by having the dates and their corresponding values as two separate columns. Example: col1: Dates col2: DateValue (the dates are still Unicode and datevalues are still integers)
Date DateValue
0 2012-07-01 391
1 2012-07-02 392
2 2012-07-03 392
. 2012-07-04 392
. ... ...
. ... ...
Any help in this direction would be much appreciated. I am unable to find resources on the pandas docs to help me with this.
I know one solution might be to convert each key-value pair in this dict, into a dict so the entire structure becomes a dict of dicts, and then we can add each row individually to the dataframe. But I want to know if there is an easier way and a more direct way to do this.
So far I have tried converting the dict into a series object but this doesn't seem to maintain the relationship between the columns:
s = Series(my_dict,index=my_dict.keys())
Solution
The error here, is since calling the DataFrame constructor with scalar values (where it expects values to be a list/dict/... i.e. have multiple columns):
pd.DataFrame(d)
ValueError: If using all scalar values, you must must pass an index
You could take the items from the dictionary (i.e. the key-value pairs):
In [11]: pd.DataFrame(d.items()) # or list(d.items()) in python 3
Out[11]:
0 1
0 2012-07-02 392
1 2012-07-06 392
2 2012-06-29 391
3 2012-06-28 391
...
In [12]: pd.DataFrame(d.items(), columns=['Date', 'DateValue'])
Out[12]:
Date DateValue
0 2012-07-02 392
1 2012-07-06 392
2 2012-06-29 391
But I think it makes more sense to pass the Series constructor:
In [21]: s = pd.Series(d, name='DateValue')
Out[21]:
2012-06-08 388
2012-06-09 388
2012-06-10 388
In [22]: s.index.name = 'Date'
In [23]: s.reset_index()
Out[23]:
Date DateValue
0 2012-06-08 388
1 2012-06-09 388
2 2012-06-10 388
Answered By - Andy Hayden
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.