Issue
I have a pandas DataFrame called data_combined with the following structure:
index corr_year corr_5d
0 (DAL, AAL) 0.873762 0.778594
1 (WEC, ED) 0.851578 0.850549
2 (CMS, LNT) 0.850028 0.776143
3 (SWKS, QRVO) 0.850799 0.830603
4 (ALK, DAL) 0.874162 0.744590
Now I am trying to divide the column named index into two columns on the (,). The desired output should look like this:
index1 index2 corr_year corr_5d
0 DAL AAL 0.873762 0.778594
1 WEC ED 0.851578 0.850549
2 CMS LNT 0.850028 0.776143
3 SWKS QRVO 0.850799 0.830603
4 ALK DAL 0.874162 0.744590
I have tried using pd.explode() with the following code
data_results_test = data_results_combined.explode('index')
data_results_test
Which leads to the following output:
index corr_year corr_5d
0 DAL 0.873762 0.778594
0 AAL 0.873762 0.778594
1 WEC 0.851578 0.850549
1 ED 0.851578 0.850549
How can I achieve the split with newly added columns instead of rows. pd.explode does not seem to have any option to choose wether to add new rows or columns
Solution
How about a simple apply? (Assuming 'index' column is a tuple)
data_results_combined['index1'] = data_results_combined['index'].apply(lambda x: x[0])
data_results_combined['index2'] = data_results_combined['index'].apply(lambda x: x[1])
Answered By - Alex
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.