Issue
I am new in Python and I am struggling to reshape my dataFrame.
For a particular client (contact_id
), I want to add an new date column that actually substracts the DTHR_OPERATION
date for a 'TYPE_OPER_VALIDATION = 3'
minus the DTHR_OPERATION
date for a 'TYPE_OPER_VALIDATION = 1'
.
If the 'TYPE_OPER_VALIDATION'
is equal to 3 and that there is less than a hour difference between those two dates, I want to add a string such as 'connection' for example in the new column.
I have an issue "python Series' object has no attribute 'total_seconds"
when I try to compare if the time difference is indeed minus or equal to an hour. I tried many solutions I found on Internet but I always seem to have a data type issue.
Here is my code snippet:
df_oper_one = merged_table.loc[(merged_table['TYPE_OPER_VALIDATION']==1),['contact_id','TYPE_OPER_VALIDATION','DTHR_OPERATION']]
df_oper_three = merged_table.loc[(merged_table['TYPE_OPER_VALIDATION']==3),['contact_id','TYPE_OPER_VALIDATION','DTHR_OPERATION']]
connection = []
for row in merged_table['contact_id']:
if (df_validation.loc[(df_validation['TYPE_OPER_VALIDATION']==3)]) & ((pd.to_datetime(df_oper_three['DTHR_OPERATION'],format='%Y-%m-%d %H:%M:%S') - pd.to_datetime(df_oper_one['DTHR_OPERATION'],format='%Y-%m-%d %H:%M:%S').total_seconds()) <= 3600): connection.append('connection')
# if diff_date.total_seconds() <= 3600: connection.append('connection')
else: connection.append('null')
merged_table['connection'] = pd.Series(connection)
Solution
sure, here is the information you are looking for :
df_contact = pd.DataFrame{'contact_id': {0: '865C5EDF-C7AC-EC11-9840', 1: '9C9690B1-F8AC-EC11', 2: '4DD27359-14AF-EC11-9840', 3: '0091373E-E7F4-4170-BCAC'}, 'birthdate': {0: Timestamp('2005-05-19
00:00:00'), 1: Timestamp('1982-01-28 00:00:00'), 2: Timestamp('1997-05-15 00:00:00'), 3: Timestamp('2005-03-22 00:00:00')}, 'fullname': {0: 'Laura VERVO', 1: 'Mélanie ALBE', 2: 'Eric VANO', 3: 'Jean Docq'}, 'lastname': {0: 'VERVO', 1: 'ALBE', 2: 'VANO', 3: 'Docq'}, 'age': {0: 17, 1: 40, 2: 25, 3: 17}}
df_validation = pd.dataframe{'validation_id': {0: 8263835881, 1: 8263841517, 2: 8263843376, 3: 8263843377, 4: 8263843381, 5: 8263843382, 6: 8263863088, 7: 8263863124, 8: 8263868113, 9: 8263868123}, 'LIBEL_LONG_PRODUIT_TITRE': {0: 'Mens NEXT 12-17', 1: 'Ann NEXT 25-64%B', 2: 'Ann EXPRESS CBLANCHE', 3: 'Multi 8 NEXT', 4: 'Ann EXPRESS 18-24', 5: 'SNCB+TEC NEXT ABO', 6: 'Ann EXPRESS 18-24', 7: 'Ann EXPRESS 12-17%B', 8: '1 jour EX Réfugié', 9: 'Ann EXPRESS 2564%B'}, 'DTHR_OPERATION':
{0: Timestamp('2022-10-01 00:02:02'), 1: Timestamp('2022-10-01 00:22:45'), 2: Timestamp('2022-10-01 00:02:45'), 3: Timestamp('2022-10-01 00:02:49'), 4: Timestamp('2022-10-01 00:07:03'), 5: Timestamp('2022-10-01 00:07:06'), 6: Timestamp('2022-10-01 00:07:40'), 7: Timestamp('2022-10-01 00:31:51'), 8: Timestamp('2022-10-01 00:03:33'), 9: Timestamp('2022-10-01 00:07:40')}, 'TYPE_OPER_VALIDATION': {0: 1, 1: 1, 2: 1, 3: 1, 4: 1, 5: 1, 6: 3, 7: 3, 8: 2, 9: 1}, 'NUM_SERIE_SUPPORT': {0: '2040121921', 1: '2035998914', 2: '2034456458', 3: '14988572652829627697', 4: '2035956003', 5: '2033613155', 6: '2040119429', 7: '2036114867', 8: '14988572650230713650', 9: '2040146199'}}
{'support_id': {0: '8D3A331D-3E86-EC11-93B0', 1: '44863926-3E86-EC11-93B0', 2: '45863926-3E86-EC11-93B0', 3: '46863926-3E86-EC11-93B0', 4: '47863926-3E86-EC11-93B0', 5: 'E3863926-3E86-EC11-93B0', 6: '56873926-3E86-EC11', 7: 'E3CE312C-3E86-EC11-93B0', 8: 'F3CE312C-3E86-EC11-93B0', 9: '3CCF312C-3E86-EC11-93B0'}, 'bd_linkedcustomer': {0: '15CCC384-C4AD-EC11', 1: '9D27061D-14AE-EC11-9840', 2: '74CAE68F-D4AC-EC11-9840', 3: '18F5FE1A-58AC-EC11-983F', 4: None, 5: '9FBDA103-2FAD-EC11-9840', 6: 'EEA1FB63-75AC-EC11-9840', 7: 'F150EC3D-0DAD-EC11-9840', 8: '111DE8C4-CAAC-EC11-9840', 9: None}, 'bd_supportserialnumber': {0: '44884259', 1: '2036010559', 2: '62863150', 3: '2034498160', 4: '62989611', 5: '2036094315', 6: '2033192919', 7: '2036051529', 8: '2036062236', 9: '2033889172'}}
df_support = pd.dataframe{'support_id': {0: '8D3A331D-3E86-EC11-93B0', 1: '44863926-3E86-EC11', 2: '45863926-3E86-EC11-93B0', 3: '46863926-3E86-EC11-93B0', 4: '47863926-3E86-EC11-93B0', 5: 'E3863926-3E86-EC11-93B0', 6: '56873926-3E86-EC11-93B0', 7: 'E3CE312C-3E86-EC11-93B0', 8: 'F3CE312C-3E86-EC11-93B0', 9: '3CCF312C-3E86-EC11-93B0'}, 'bd_linkedcustomer': {0: '15CCC384-C4AD-EC11-9840', 1: '9D27061D-14AE-EC11-9840', 2: '74CAE68F-D4AC-EC11-9840', 3: '18F5FE1A-58AC-EC11-983F', 4: None, 5: '9FBDA103-2FAD-EC11', 6: 'EEA1FB63-75AC-EC11-9840', 7: 'F150EC3D-0DAD-EC11-9840', 8: '111DE8C4-CAAC-EC11-9840', 9: None}, 'bd_supportserialnumber': {0: '44884259', 1: '2036010559', 2: '62863150', 3: '2034498160', 4: '62989611', 5: '2036094315', 6: '2033192919', 7: '2036051529', 8: '2036062236', 9: '2033889172'}}
df2 = pd.dataframe{'support_id': {0: '4BE73E8C-B8F9-EC11-BB3D', 1: '4BE73E8C-B8F9-EC11-BB3D', 2: '4BE73E8C-B8F9-EC11-BB3D', 3: '4BE73E8C-B8F9-EC11-BB3D', 4: '4BE73E8C-B8F9-EC11-BB3D', 5: '4BE73E8C-B8F9-EC11-BB3D', 6: '4BE73E8C-B8F9-EC11', 7: '4BE73E8C-B8F9-EC11-BB3D', 8: '4BE73E8C-B8F9-EC11-BB3D', 9: '4BE73E8C-B8F9-EC11-BB3D'}, 'bd_linkedcustomer': {0: '9C9690B1-F8AC-EC11-9840', 1: '9C9690B1-F8AC-EC11-9840', 2: '9C9690B1-F8AC-EC11-9840', 3: '9C9690B1-F8AC-EC11-9840', 4: '9C9690B1-F8AC-EC11-9840',
5: '9C9690B1-F8AC-EC11-9840', 6: '9C9690B1-F8AC-EC11-9840', 7: '9C9690B1-F8AC-EC11-9840', 8: '9C9690B1-F8AC-EC11-9840', 9: '9C9690B1-F8AC-EC11-9840'}, 'bd_supportserialnumber': {0: '2036002771', 1: '2036002771', 2: '2036002771', 3: '2036002771', 4: '2036002771', 5: '2036002771', 6: '2036002771', 7: '2036002771', 8: '2036002771', 9: '2036002771'}, 'contact_id': {0: '9C9690B1-F8AC-EC11-9840', 1: '9C9690B1-F8AC-EC11-9840', 2: '9C9690B1-F8AC-EC11-9840', 3: '9C9690B1-F8AC-EC11-9840', 4: '9C9690B1-F8AC-EC11-9840', 5: '9C9690B1-F8AC-EC11-9840', 6: '9C9690B1-F8AC-EC11-9840', 7: '9C9690B1-F8AC-EC11-9840', 8: '9C9690B1-F8AC-EC11-9840', 9: '9C9690B1-F8AC-EC11-9840'}, 'birthdate': {0: Timestamp('1982-01-28 00:00:00'), 1: Timestamp('1982-01-28 00:00:00'), 2: Timestamp('1982-01-28 00:00:00'), 3: Timestamp('1982-01-28 00:00:00'), 4: Timestamp('1982-01-28 00:00:00'), 5: Timestamp('1982-01-28 00:00:00'), 6: Timestamp('1982-01-28 00:00:00'), 7: Timestamp('1982-01-28 00:00:00'), 8: Timestamp('1982-01-28 00:00:00'), 9: Timestamp('1982-01-28 00:00:00')}, 'fullname': {0: 'Mélanie ALBE', 1: 'Mélanie ALBE', 2: 'Mélanie ALBE', 3: 'Mélanie ALBE', 4: 'Mélanie ALBE', 5: 'Mélanie ALBE', 6: 'Mélanie ALBE', 7: 'Mélanie ALBE', 8: 'Mélanie ALBE', 9: 'Mélanie ALBE'}, 'lastname': {0: 'ALBE', 1: 'ALBE', 2: 'ALBE', 3: 'ALBE', 4: 'ALBE', 5: 'ALBE', 6: 'ALBE', 7: 'ALBE', 8: 'ALBE', 9: 'ALBE'}, 'age': {0: 40, 1: 40, 2: 40, 3: 40, 4: 40, 5: 40, 6: 40, 7: 40, 8: 40, 9: 40}, 'validation_id': {0: 8264573419, 1: 8264574166, 2: 8264574345, 3: 8264676975, 4: 8265441741, 5: 8272463799, 6: 8272471694, 7: 8274368291, 8: 8274397366, 9: 8277077728}, 'LIBEL_LONG_PRODUIT_TITRE': {0: 'Ann NEXT 25-64', 1: 'Ann NEXT 25-64', 2: 'Ann NEXT 25-64', 3: 'Ann NEXT 25-64', 4: 'Ann NEXT 25-64', 5: 'Ann NEXT 25-64', 6: 'Ann NEXT 25-64', 7: 'Ann NEXT 25-64', 8: 'Ann NEXT 25-64', 9: 'Ann NEXT 25-64'}, 'DTHR_OPERATION': {0: Timestamp('2022-10-01 08:30:18'), 1: Timestamp('2022-10-01 12:23:34'), 2: Timestamp('2022-10-01 07:47:46'), 3: Timestamp('2022-10-01 13:11:54'), 4: Timestamp('2022-10-01 12:35:02'), 5: Timestamp('2022-10-04 08:34:23'), 6: Timestamp('2022-10-04 08:04:50'), 7: Timestamp('2022-10-04 17:17:47'), 8: Timestamp('2022-10-04 15:20:29'), 9: Timestamp('2022-10-05 07:54:14')}, 'TYPE_OPER_VALIDATION': {0: 3, 1: 1, 2: 1, 3: 3, 4: 3, 5: 3, 6: 1, 7: 1, 8: 1, 9: 1}, 'NUM_SERIE_SUPPORT': {0: '2036002771', 1: '2036002771', 2: '2036002771', 3: '2036002771', 4: '2036002771', 5: '2036002771', 6: '2036002771', 7: '2036002771', 8: '2036002771', 9: '2036002771'}}
df3 = pd.dataframe{'contact_id': {0: '9C9690B1-F8AC-EC11-9840', 1: '9C9690B1-F8AC-EC11-9840', 2: '9C9690B1-F8AC-EC11-9840', 3: '9C9690B1-F8AC-EC11-9840', 4: '9C9690B1-F8AC-EC11-9840', 5: '9C9690B1-F8AC-EC11-9840', 6: '9C9690B1-F8AC-EC11-9840', 7: '9C9690B1-F8AC-EC11-9840', 8: '9C9690B1-F8AC-EC11-9840', 9: '9C9690B1-F8AC-EC11-9840'}, 'DTHR_OPERATION_type3': {0: Timestamp('2022-10-01 08:30:18'), 1: Timestamp('2022-10-01 08:30:18'), 2: Timestamp('2022-10-01 08:30:18'), 3: Timestamp('2022-10-01 08:30:18'), 4: Timestamp('2022-10-01 08:30:18'), 5: Timestamp('2022-10-01 08:30:18'), 6: Timestamp('2022-10-01 08:30:18'), 7: Timestamp('2022-10-01 08:30:18'), 8: Timestamp('2022-10-01 08:30:18'), 9: Timestamp('2022-10-01 08:30:18')}, 'DTHR_OPERATION_type1': {0: Timestamp('2022-10-01 12:23:34'), 1: Timestamp('2022-10-01 07:47:46'), 2: Timestamp('2022-10-04 08:04:50'), 3: Timestamp('2022-10-04 17:17:47'), 4: Timestamp('2022-10-04 15:20:29'), 5: Timestamp('2022-10-05 07:54:14'), 6: Timestamp('2022-10-05 18:22:42'), 7: Timestamp('2022-10-06 08:14:28'), 8: Timestamp('2022-10-06 18:19:33'), 9: Timestamp('2022-10-08 07:46:45')}, 'seconds': {0: -13996.0, 1: 2552.0, 2: -257672.00000000003, 3: -290849.0, 4: -283811.0, 5: -343436.0, 6: -381144.0, 7: -431050.0, 8: -467355.00000000006, 9: -602187.0}, 'first_connection': {0: 'no', 1: 'yes', 2: 'no', 3: 'no', 4: 'no', 5: 'no', 6: 'no', 7: 'no', 8: 'no', 9: 'no'}}
df4 = pd.dataframe{'contact_id': {0: '9C9690B1-F8AC-EC11-9840', 1: '9C9690B1-F8AC-EC11-9840', 2: '9C9690B1-F8AC-EC11-9840', 3: '9C9690B1-F8AC-EC11-9840', 4: '9C9690B1-F8AC-EC11-9840', 5: '9C9690B1-F8AC-EC11-9840', 6: '9C9690B1-F8AC-EC11-9840', 7: '9C9690B1-F8AC-EC11-9840', 8: '9C9690B1-F8AC-EC11-9840', 9: '9C9690B1-F8AC-EC11-9840'}, 'DTHR_OPERATION_type3': {0: Timestamp('2022-10-01 08:30:18'), 1: Timestamp('2022-10-01 08:30:18'), 2: Timestamp('2022-10-01 08:30:18'), 3: Timestamp('2022-10-01 08:30:18'), 4: Timestamp('2022-10-01 08:30:18'), 5: Timestamp('2022-10-01 08:30:18'), 6: Timestamp('2022-10-01 08:30:18'), 7: Timestamp('2022-10-01 08:30:18'), 8: Timestamp('2022-10-01 08:30:18'), 9: Timestamp('2022-10-01 08:30:18')}, 'DTHR_OPERATION_type3bis': {0: Timestamp('2022-10-01 08:30:18'), 1: Timestamp('2022-10-01 13:11:54'), 2: Timestamp('2022-10-01 12:35:02'), 3: Timestamp('2022-10-04 08:34:23'), 4: Timestamp('2022-10-05 08:27:04'), 5: Timestamp('2022-10-05 19:05:29'), 6: Timestamp('2022-10-06 08:34:21'), 7: Timestamp('2022-10-06 18:37:56'), 8: Timestamp('2022-10-06 19:08:30'), 9: Timestamp('2022-10-08 13:01:13')}, 'seconds_type3': {0: 0.0, 1: -16896.0, 2: -14684.000000000002, 3: -259445.00000000003, 4: -345406.0, 5: -383711.0, 6: -432243.0, 7: -468458.00000000006, 8: -470292.00000000006, 9: -621055.0}, 'second_or_more_connection': {0: 'no', 1: 'no', 2: 'no', 3: 'no', 4: 'no', 5: 'no', 6: 'no', 7: 'no', 8: 'no', 9: 'no'}}
The desired result is a dF5 with the following columns [['contact_id', 'fullname', 'validation_id', 'LIBEL_LONG_PRODUIT_TITRE', 'TYPE_OPER_VALIDATION']]
as well as this new colum dF5['connection]
. Don't hestitate to reach out if you need further information or clarifications. Many thanks for your support :)
Answered By - Nicolas Eloy
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.