Issue
I'm trying to implement a variation ratio, and I need T
samples from an array C
, but each sample has different weights p_t
.
I'm using this:
import numpy as np
from scipy import stats
batch_size = 1
T = 3
C = np.array(['A', 'B', 'C'])
# p_batch_T dimensions: (batch, sample, class)
p_batch_T = np.array([[[0.01, 0.98, 0.01],
[0.3, 0.15, 0.55],
[0.85, 0.1, 0.05]]])
def variation_ratio(C, p_T):
# This function works only with one sample from the batch.
Y_T = np.array([np.random.choice(C, size=1, p=p_t) for p_t in p_T]) # vectorize this
C_mode, frecuency = stats.mode(Y_T)
T = len(Y_T)
return 1.0 - (f/T)
def variation_ratio_batch(C, p_batch_T):
return np.array([variation_ratio(C, p_T) for p_T in p_batch_T]) # and vectorize this
Is there a way to implement these functions with any for?
Solution
In stead of sampling with the given distribution p_T
, we can sample uniformly between [0,1]
and compare that to the cumulative distribution:
Let's start with Y_T
, say for p_T = p_batch_T[0]
cum_dist = p_batch_T.cumsum(axis=-1)
idx_T = (np.random.rand(len(C),1) < cum_dist[0]).argmax(-1)
Y_T = C[idx_T[...,None]]
_, f = stats.mode(Y_T) # here axis=0 is default
Now let take that to the variation_ratio_batch
:
idx_T = (np.random.rand(len(p_batch_T), len(C),1) < cum_dist).argmax(-1)
Y = C[idx_T[...,None]]
f = stats.mode(Y, axis=1) # notice axis 0 is batch
out = 1 - (f/T)
Answered By - Quang Hoang
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.