Issue
I have DataFrame which looks like just a list of numbers:
original | option 1 | option 2 |
---|---|---|
1 | NaN | NaN |
-1 | NaN | 9 |
4 | NaN | NaN |
-1 | NaN | 15 |
6 | 9 | NaN |
7 | NaN | NaN |
2 | 15 | NaN |
3 | NaN | NaN |
0 | NaN | NaN |
I need to sum next 3 values of df after each negative value - see "option1" or "option2" columns. If will also work if I get only sum results, i.e. a separate data structure which would look like [9, 15].
Any thoughts?
Solution
One approach could be as follows:
import pandas as pd
data = {'original': {0: 1, 1: -1, 2: 4, 3: -1, 4: 6, 5: 7, 6: 2, 7: 3, 8: 0}}
df = pd.DataFrame(data)
n = 3
df['option 1'] = (df['original'].rolling(n).sum()
.where(df['original'].shift(n).lt(0))
)
df['option 2'] = df['option 1'].shift(-n)
print(df)
original option 1 option 2
0 1 NaN NaN
1 -1 NaN 9.0
2 4 NaN NaN
3 -1 NaN 15.0
4 6 9.0 NaN
5 7 NaN NaN
6 2 15.0 NaN
7 3 NaN NaN
8 0 NaN NaN
Explanation
- First, use
Series.rolling
to create a rolling window for applyingsum
. - Next, chain
Series.where
and set thecond
parameter to an evaluation of values less than zero (lt
) for a shifted (shift
) version of columnoriginal
. - For
option 2
we simply apply a negative shift onoption 1
.
Answered By - ouroboros1
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.