Issue
I found this code on this site to find the second largest number:
def second_largest(numbers):
m1, m2 = None, None
for x in numbers:
if x >= m1:
m1, m2 = x, m1
elif x > m2:
m2 = x
return m2
Source: Get the second largest number in a list in linear time
Is it possible to modify this code to find the second smallest number? So for example
print second_smallest([1, 2, 3, 4])
2
Solution
The function can indeed be modified to find the second smallest:
def second_smallest(numbers):
m1 = m2 = float('inf')
for x in numbers:
if x <= m1:
m1, m2 = x, m1
elif x < m2:
m2 = x
return m2
The old version relied on a Python 2 implementation detail that None
is always sorted before anything else (so it tests as 'smaller'); I replaced that with using float('inf')
as the sentinel, as infinity always tests as larger than any other number. Ideally the original function should have used float('-inf')
instead of None
there, to not be tied to an implementation detail other Python implementations may not share.
Demo:
>>> def second_smallest(numbers):
... m1 = m2 = float('inf')
... for x in numbers:
... if x <= m1:
... m1, m2 = x, m1
... elif x < m2:
... m2 = x
... return m2
...
>>> print(second_smallest([1, 2, 3, 4]))
2
Outside of the function you found, it's almost just as efficient to use the heapq.nsmallest()
function to return the two smallest values from an iterable, and from those two pick the second (or last) value. I've included a variant of the unique_everseen()
recipe to filter out duplicate numbers:
from heapq import nsmallest
from itertools import filterfalse
def second_smallest(numbers):
s = set()
sa = s.add
un = (sa(n) or n for n in filterfalse(s.__contains__, numbers))
return nsmallest(2, un)[-1]
Like the above implementation, this is a O(N) solution; keeping the heap variant each step takes logK time, but K is a constant here (2)!
Whatever you do, do not use sorting; that takes O(NlogN) time.
Answered By - Martijn Pieters
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.