Issue
I would like to make random mouse movements in specified rectangle area (limited with coordinates x1, y1, x2, y2, x3, y3, x4, y4). Movements should be smooth, random, not just straight lines, go randomly up/down/left/right/etc for specified time duration.
Could you give me a hand or working example I can learn from? many thanks
Solution
This code works on Windows only. You can experiment with the parameters inside the random_movement function to get better results. Good luck!
import ctypes
import random
import time
import math
def move_mouse(pos):
x_pos, y_pos = pos
screen_size = ctypes.windll.user32.GetSystemMetrics(0), ctypes.windll.user32.GetSystemMetrics(1)
x = 65536L * x_pos / screen_size[0] + 1
y = 65536L * y_pos / screen_size[1] + 1
return ctypes.windll.user32.mouse_event(32769, x, y, 0, 0)
def random_movement(top_left_corner, bottom_right_corner, min_speed=100, max_speed=200):
'''speed is in pixels per second'''
x_bound = top_left_corner[0], bottom_right_corner[0]
y_bound = top_left_corner[1], bottom_right_corner[1]
pos = (random.randrange(*x_bound),
random.randrange(*y_bound))
speed = min_speed + random.random()*(max_speed-min_speed)
direction = 2*math.pi*random.random()
def get_new_val(min_val, max_val, val, delta=0.01):
new_val = val + random.randrange(-1,2)*(max_val-min_val)*delta
if new_val<min_val or new_val>max_val:
return get_new_val(min_val, max_val, val, delta)
return new_val
steps_per_second = 35.0
while True:
move_mouse(pos)
time.sleep(1.0/steps_per_second)
speed = get_new_val(min_speed, max_speed, speed)
direction+=random.randrange(-1,2)*math.pi/5.0*random.random()
new_pos = (int(round(pos[0]+speed*math.cos(direction)/steps_per_second)),
int(round(pos[1]+speed*math.sin(direction)/steps_per_second)))
while new_pos[0] not in xrange(*x_bound) or new_pos[1] not in xrange(*y_bound):
direction = 2*math.pi*random.random()
new_pos = (int(round(pos[0]+speed*math.cos(direction)/steps_per_second)),
int(round(pos[1]+speed*math.sin(direction)/steps_per_second)))
pos=new_pos
Example:
random_movement((300,300),(600,600))
Answered By - Piotr Dabkowski
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.