Issue
I made a mock-up example to illustrate my problem, naturally, what I am working with is something way more complex. Reading the example will make everything easier to understand but my goal is to use the row reference values of one dataframe to set the values of a new column of another dataframe. That, taking my example, I want to create a new column in df1 named z1, that column will be formed by considering the values of x1 taking the reference of y2 values of d2.
import numpy as np
import pandas as pd
x1 = np.array([])
for i in np.arange(0, 15, 3):
x1i = np.repeat(i, 3)
x1 = np.append(x1, x1i)
y1 = np.linspace(0, 1, len(x1))
x2 = np.arange(0, 15, 3)
y2 = np.linspace(0, 1, len(x2))
df1 = pd.DataFrame([x1, y1]).T
df2 = pd.DataFrame([x2, y2]).T
df1.columns = ['x1', 'y1']
df2.columns = ['x2', 'y2']
So, we have that df1 is:
x1 y1
0 0.0 0.000000
1 0.0 0.071429
2 0.0 0.142857
3 3.0 0.214286
4 3.0 0.285714
5 3.0 0.357143
6 6.0 0.428571
7 6.0 0.500000
8 6.0 0.571429
9 9.0 0.642857
10 9.0 0.714286
11 9.0 0.785714
12 12.0 0.857143
13 12.0 0.928571
14 12.0 1.000000
and df2 is:
x2 y2
0 0.0 0.00
1 3.0 0.25
2 6.0 0.50
3 9.0 0.75
4 12.0 1.00
What I would like to achieve is:
x1 y1 z1
0 0.0 0.000000 0.00
1 0.0 0.071429 0.00
2 0.0 0.142857 0.00
3 3.0 0.214286 0.25
4 3.0 0.285714 0.25
5 3.0 0.357143 0.25
6 6.0 0.428571 0.50
7 6.0 0.500000 0.50
8 6.0 0.571429 0.50
9 9.0 0.642857 0.75
10 9.0 0.714286 0.75
11 9.0 0.785714 0.75
12 12.0 0.857143 1.00
13 12.0 0.928571 1.00
14 12.0 1.000000 1.00
Solution
You can use map
for this.
df1['z'] = df1['x1'].map(df2.set_index('x2')['y2'])
x1 y1 z
0 0.0 0.000000 0.00
1 0.0 0.071429 0.00
2 0.0 0.142857 0.00
3 3.0 0.214286 0.25
4 3.0 0.285714 0.25
5 3.0 0.357143 0.25
6 6.0 0.428571 0.50
7 6.0 0.500000 0.50
8 6.0 0.571429 0.50
9 9.0 0.642857 0.75
10 9.0 0.714286 0.75
11 9.0 0.785714 0.75
12 12.0 0.857143 1.00
13 12.0 0.928571 1.00
14 12.0 1.000000 1.00
Answered By - Rabinzel
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.