Issue
I have the following script that is working
import numpy as np
import shap
from tensorflow import keras
from tensorflow.keras import layers
X = np.array([[(1,2,3,3,1),(3,2,1,3,2),(3,2,2,3,3),(2,2,1,1,2),(2,1,1,1,1)],
[(4,5,6,4,4),(5,6,4,3,2),(5,5,6,1,3),(3,3,3,2,2),(2,3,3,2,1)],
[(7,8,9,4,7),(7,7,6,7,8),(5,8,7,8,8),(6,7,6,7,8),(5,7,6,6,6)],
[(7,8,9,8,6),(6,6,7,8,6),(8,7,8,8,8),(8,6,7,8,7),(8,6,7,8,8)],
[(4,5,6,5,5),(5,5,5,6,4),(6,5,5,5,6),(4,4,3,3,3),(5,5,4,4,5)],
[(4,5,6,5,5),(5,5,5,6,4),(6,5,5,5,6),(4,4,3,3,3),(5,5,4,4,5)],
[(1,2,3,3,1),(3,2,1,3,2),(3,2,2,3,3),(2,2,1,1,2),(2,1,1,1,1)]])
y = np.array([0, 1, 2, 2, 1, 1, 0])
# Updated model with correct input shape
model = keras.Sequential([
layers.Conv1D(128, kernel_size=3, activation='relu',input_shape=(5,5)),
layers.MaxPooling1D(pool_size=2),
layers.LSTM(128, return_sequences=True),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(5, activation='softmax') # Adjust the number of output units based on your problem (3 for 3 classes)
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# Train the model
model.fit(X, y, epochs=10)
explainer = shap.GradientExplainer(model, X)
shap_values = explainer.shap_values(X)
#print(shap_values)
cls = 0
idx = 0
shap.summary_plot(shap_values[cls][:,idx,:], X[:,idx,:])
I want to save shap.summary_plot
as an image file in my folder.
How can I do that?
I am trying the following code but it is saving an empty figure.
# Save the plot using matplotlib
import matplotlib.pyplot as plt
save_path = 'shap_summary_plot.png'
plt.savefig(save_path)
plt.close()
Anyone know how to plot this?
Solution
Initialize a matplotlib figure object first and plot the summary plot. Then interact with this figure object to save, close etc. In other words, try the following code:
import matplotlib.pyplot as plt
fig = plt.figure() # <---- initialize figure `fig`
shap.summary_plot(shap_values[cls][:,idx,:], X[:,idx,:])
save_path = 'shap_summary_plot.png'
fig.savefig(save_path) # <---- save `fig` (not current figure)
plt.close(fig) # <---- close `fig`
Answered By - cottontail
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.