Issue
I want to use an RNN with bilstm layers using pytorch on protein embeddings. It worked with Linear Layer but when i use Bilstm i have a Runtime error. Sorry if its not clear its my first publication and i will be grateful if someone can help me.
from collections import Counter, OrderedDict
from typing import Optional
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn.functional as F # noqa
from deepchain import log
from sklearn.model_selection import train_test_split
from sklearn.utils.class_weight import compute_class_weight
from torch import Tensor, nn
num_layers=2
hidden_size=256
from torch.utils.data import DataLoader, TensorDataset
def classification_dataloader_from_numpy(
x: np.ndarray, y: np.array, batch_size: int = 32
) -> DataLoader:
"""Build a dataloader from numpy for classification problem
This dataloader is use only for classification. It detects automatically the class of
the problem (binary or multiclass classification)
Args:
x (np.ndarray): [description]
y (np.array): [description]
batch_size (int, optional): [description]. Defaults to None.
Returns:
DataLoader: [description]
"""
n_class: int = len(np.unique(y))
if n_class > 2:
log.info("This is a classification problem with %s classes", n_class)
else:
log.info("This is a binary classification problem")
# y is float for binary classification, int for multiclass
y_tensor = torch.tensor(y).long() if len(np.unique(y)) > 2 else torch.tensor(y).float()
tensor_set = TensorDataset(torch.tensor(x).float(), y_tensor)
loader = DataLoader(tensor_set, batch_size=batch_size)
return loader
class RNN(pl.LightningModule):
"""A `pytorch` based deep learning model"""
def __init__(self, input_shape: int, n_class: int, num_layers, n_neurons: int = 128, lr: float = 1e-3):
super(RNN,self).__init__()
self.lr = lr
self.n_neurons=n_neurons
self.num_layers=num_layers
self.input_shape = input_shape
self.output_shape = 1 if n_class <= 2 else n_class
self.activation = nn.Sigmoid() if n_class <= 2 else nn.Softmax(dim=-1)
self.lstm = nn.LSTM(self.input_shape, self.n_neurons, num_layers, batch_first=True, bidirectional=True)
self.fc= nn.Linear(self.n_neurons, self.output_shape)
def forward(self, x):
h0=torch.zeros(self.num_layers, x_size(0), self.n_neurons).to(device)
c0=torch.zeros(self.num_layers, x_size(0), self.n_neurons).to(device)
out, _=self.lstm(x,(h0, c0))
out=self.fc(out[:, -1, :])
return self.fc(x)
def training_step(self, batch, batch_idx):
"""training_step defined the train loop. It is independent of forward"""
x, y = batch
y_hat = self.fc(x).squeeze()
y = y.squeeze()
if self.output_shape > 1:
y_hat = torch.log(y_hat)
loss = self.loss(y_hat, y)
self.log("train_loss", loss, on_epoch=True, on_step=False)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
"""training_step defined the train loop. It is independent of forward"""
x, y = batch
y_hat = self.fc(x).squeeze()
y = y.squeeze()
if self.output_shape > 1:
y_hat = torch.log(y_hat)
loss = self.loss(y_hat, y)
self.log("val_loss", loss, on_epoch=True, on_step=False)
return {"val_loss": loss}
def configure_optimizers(self):
"""(Optional) Configure training optimizers."""
return torch.optim.Adam(self.parameters(),lr=self.lr)
def compute_class_weight(self, y: np.array, n_class: int):
"""Compute class weight for binary/multiple classification
If n_class=2, only compute weights for the positve class.
If n>2, compute for all classes.
Args:
y ([np.array]):vector of int represented the class
n_class (int) : number fo class to use
"""
if n_class == 2:
class_count: typing.Counter = Counter(y)
cond_binary = (0 in class_count) and (1 in class_count)
assert cond_binary, "Must have O and 1 class for binary classification"
weight = class_count[0] / class_count[1]
else:
weight = compute_class_weight(class_weight="balanced", classes=np.unique(y), y=y)
return torch.tensor(weight).float()
def fit(
self,
x: np.ndarray,
y: np.array,
epochs: int = 10,
batch_size: int = 32,
class_weight: Optional[str] = None,
validation_data: bool = True,
**kwargs
):
assert isinstance(x, np.ndarray), "X should be a numpy array"
assert isinstance(y, np.ndarray), "y should be a numpy array"
assert class_weight in (
None,
"balanced",
), "the only choice available for class_weight is 'balanced'"
n_class = len(np.unique(y))
weight = None
self.input_shape = x.shape[1]
self.output_shape = 1 if n_class <= 2 else n_class
self.activation = nn.Sigmoid() if n_class <= 2 else nn.Softmax(dim=-1)
if class_weight == "balanced":
weight = self.compute_class_weight(y, n_class)
self.loss = nn.NLLLoss(weight) if self.output_shape > 1 else nn.BCELoss(weight)
if validation_data:
x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2)
train_loader = classification_dataloader_from_numpy(
x_train, y_train, batch_size=batch_size
)
val_loader = classification_dataloader_from_numpy(x_val, y_val, batch_size=batch_size)
else:
train_loader = classification_dataloader_from_numpy(x, y, batch_size=batch_size)
val_loader = None
self.trainer = pl.Trainer(max_epochs=epochs, **kwargs)
self.trainer.fit(self, train_loader, val_loader)
def predict(self, x):
"""Run inference on data."""
if self.output_shape is None:
log.warning("Model is not fitted. Can't do predict")
return
return self.forward(x).detach().numpy()
def save(self, path: str):
"""Save the state dict model with torch"""
torch.save(self.fc.state_dict(), path)
log.info("Save state_dict parameters in model.pt")
def load_state_dict(self, state_dict: "OrderedDict[str, Tensor]", strict: bool = False):
"""Load state_dict saved parameters
Args:
state_dict (OrderedDict[str, Tensor]): state_dict tensor
strict (bool, optional): [description]. Defaults to False.
"""
self.fc.load_state_dict(state_dict, strict=strict)
self.fc.eval()
mlp = RNN(input_shape=1024, n_neurons=1024, num_layers=2, n_class=2)
mlp.fit(embeddings_train, np.array(y_train),validation_data=(embeddings_test, np.array(y_test)), epochs=30)
mlp.save("model.pt")
These are the errors that are occured. I really need help and i remain at your disposal for further informations.
Error 1
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-154-e5fde11a675c> in <module>
1 # init MLP model, train it on the data, then save model
2 mlp = RNN(input_shape=1024, n_neurons=1024, num_layers=2, n_class=2)
----> 3 mlp.fit(embeddings_train, np.array(y_train),validation_data=(embeddings_test, np.array(y_test)), epochs=30)
4 mlp.save("model.pt")
<ipython-input-153-a8d51af53bb5> in fit(self, x, y, epochs, batch_size, class_weight, validation_data, **kwargs)
134 val_loader = None
135 self.trainer = pl.Trainer(max_epochs=epochs, **kwargs)
--> 136 self.trainer.fit(self, train_loader, val_loader)
137 def predict(self, x):
138 """Run inference on data."""
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py in fit(self, model, train_dataloader, val_dataloaders, datamodule)
456 )
457
--> 458 self._run(model)
459
460 assert self.state.stopped
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py in _run(self, model)
754
755 # dispatch `start_training` or `start_evaluating` or `start_predicting`
--> 756 self.dispatch()
757
758 # plugin will finalized fitting (e.g. ddp_spawn will load trained model)
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py in dispatch(self)
795 self.accelerator.start_predicting(self)
796 else:
--> 797 self.accelerator.start_training(self)
798
799 def run_stage(self):
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/accelerators/accelerator.py in start_training(self, trainer)
94
95 def start_training(self, trainer: 'pl.Trainer') -> None:
---> 96 self.training_type_plugin.start_training(trainer)
97
98 def start_evaluating(self, trainer: 'pl.Trainer') -> None:
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py in start_training(self, trainer)
142 def start_training(self, trainer: 'pl.Trainer') -> None:
143 # double dispatch to initiate the training loop
--> 144 self._results = trainer.run_stage()
145
146 def start_evaluating(self, trainer: 'pl.Trainer') -> None:
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py in run_stage(self)
805 if self.predicting:
806 return self.run_predict()
--> 807 return self.run_train()
808
809 def _pre_training_routine(self):
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py in run_train(self)
840 self.progress_bar_callback.disable()
841
--> 842 self.run_sanity_check(self.lightning_module)
843
844 self.checkpoint_connector.has_trained = False
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py in run_sanity_check(self, ref_model)
1105
1106 # run eval step
-> 1107 self.run_evaluation()
1108
1109 self.on_sanity_check_end()
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py in run_evaluation(self, on_epoch)
960 # lightning module methods
961 with self.profiler.profile("evaluation_step_and_end"):
--> 962 output = self.evaluation_loop.evaluation_step(batch, batch_idx, dataloader_idx)
963 output = self.evaluation_loop.evaluation_step_end(output)
964
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/trainer/evaluation_loop.py in evaluation_step(self, batch, batch_idx, dataloader_idx)
172 model_ref._current_fx_name = "validation_step"
173 with self.trainer.profiler.profile("validation_step"):
--> 174 output = self.trainer.accelerator.validation_step(args)
175
176 # capture any logged information
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/accelerators/accelerator.py in validation_step(self, args)
224
225 with self.precision_plugin.val_step_context(), self.training_type_plugin.val_step_context():
--> 226 return self.training_type_plugin.validation_step(*args)
227
228 def test_step(self, args: List[Union[Any, int]]) -> Optional[STEP_OUTPUT]:
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py in validation_step(self, *args, **kwargs)
159
160 def validation_step(self, *args, **kwargs):
--> 161 return self.lightning_module.validation_step(*args, **kwargs)
162
163 def test_step(self, *args, **kwargs):
<ipython-input-153-a8d51af53bb5> in validation_step(self, batch, batch_idx)
78 if self.output_shape > 1:
79 y_hat = torch.log(y_hat)
---> 80 loss = self.loss(y_hat, y)
81 self.log("val_loss", loss, on_epoch=True, on_step=False)
82 return {"val_loss": loss}
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/torch/nn/modules/loss.py in forward(self, input, target)
611 def forward(self, input: Tensor, target: Tensor) -> Tensor:
612 assert self.weight is None or isinstance(self.weight, Tensor)
--> 613 return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction)
614
615
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/torch/nn/functional.py in binary_cross_entropy(input, target, weight, size_average, reduce, reduction)
2760 weight = weight.expand(new_size)
2761
-> 2762 return torch._C._nn.binary_cross_entropy(input, target, weight, reduction_enum)
2763
2764
RuntimeError: all elements of input should be between 0 and 1
Error 2
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-139-b7e8b13763ef> in <module>
1 # Model evaluation
----> 2 y_pred = mlp(embeddings_val).squeeze().detach().numpy()
3 model_evaluation_accuracy(np.array(y_val), y_pred)
/opt/conda/envs/bio-transformers/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
<ipython-input-136-e2fc535640ab> in forward(self, x)
55 self.fc= nn.Linear(self.hidden_size, self.output_shape)
56 def forward(self, x):
---> 57 h0=torch.zeros(self.num_layers, x_size(0), self.hidden_size).to(device)
58 c0=torch.zeros(self.num_layers, x_size(0), self.hidden_size).to(device)
59 out, _=self.lstm(x,(h0, c0))
NameError: name 'x_size' is not defined
Solution
I am adding this as an answer because it would be too hard to put in comment.
The main problem that you have is about BCE loss. IIRC BCE loss expects p(y=1), so your output should be between 0 and 1. If you want to use logits (which is also more numerically stable), you should use BinaryCrossEntropyWithLogits
.
As you mention in one of the comments, you are using the sigmoid activation but something about your forward function looks off to me. Mainly the last line of your forward function is
return self.fc(x)
This does not use sigmoid activation. Moreover you are only using input, x for producing the output. The LSTM outputs are just being discarded? I think, it would be a good idea to add some prints statements or breakpoints to make sure that the intermediate outputs are as you expect them to be.
Answered By - Umang Gupta
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.