Issue
My goal is to run a Keras model I have made in my ESP32 microcontroller. I have the libraries all working correctly.
I have created a Keras model using google Collab that looks to be working fine when I give it random test data within google Collab. The model has two input features and 4 different outputs.(a multiple-output regression model)
However, when I export and load the model into my c++ application in the ESP32 it does not matter what the inputs are, it always predicts the same output.
I have based myself in this code in order to load and run the model in c++ : https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/examples/magic_wand/main_functions.cc
And this is my version of the code
namespace {
tflite::ErrorReporter* error_reporter = nullptr;
const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;
TfLiteTensor* input = nullptr;
TfLiteTensor* output = nullptr;
int inference_count = 0;
// Create an area of memory to use for input, output, and intermediate arrays.
// Finding the minimum value for your model may require some trial and error.
constexpr int kTensorArenaSize = 2 * 2048;
uint8_t tensor_arena[kTensorArenaSize];
} // namespace
static void setup(){
static tflite::MicroErrorReporter micro_error_reporter;
error_reporter = µ_error_reporter;
model = tflite::GetModel(venti_model);
if (model->version() != TFLITE_SCHEMA_VERSION) {
error_reporter->Report(
"Model provided is schema version %d not equal "
"to supported version %d.",
model->version(), TFLITE_SCHEMA_VERSION);
return;
}
// This pulls in all the operation implementations we need.
// NOLINTNEXTLINE(runtime-global-variables)
static tflite::ops::micro::AllOpsResolver resolver;
// Build an interpreter to run the model with.
static tflite::MicroInterpreter static_interpreter(
model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;
// Allocate memory from the tensor_arena for the model's tensors.
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
error_reporter->Report("AllocateTensors() failed");
return;
}
// Obtain pointers to the model's input and output tensors.
input = interpreter->input(0);
ESP_LOGI("TENSOR SETUP", "input size = %d", input->dims->size);
ESP_LOGI("TENSOR SETUP", "input size in bytes = %d", input->bytes);
ESP_LOGI("TENSOR SETUP", "Is input float32? = %s", (input->type == kTfLiteFloat32) ? "true" : "false");
ESP_LOGI("TENSOR SETUP", "Input data dimentions = %d",input->dims->data[1]);
output = interpreter->output(0);
ESP_LOGI("TENSOR SETUP", "output size = %d", output->dims->size);
ESP_LOGI("TENSOR SETUP", "output size in bytes = %d", output->bytes);
ESP_LOGI("TENSOR SETUP", "Is input float32? = %s", (output->type == kTfLiteFloat32) ? "true" : "false");
ESP_LOGI("TENSOR SETUP", "Output data dimentions = %d",output->dims->data[1]);
}
static bool setupDone = true;
static void the_ai_algorithm_task(){
/* First time task is init setup the ai model */
if(setupDone == false){
setup();
setupDone = true;
}
/* Load the input data i.e deltaT1 and deltaT2 */
//int i = 0;
input->data.f[0] = 2.0; /* Different values dont change the output */
input->data.f[1] = 3.2;
// Run inference, and report any error
TfLiteStatus invoke_status = interpreter->Invoke();
if (invoke_status != kTfLiteOk) {
error_reporter->Report("Invoke failed");
// return;
}
/* Retrieve outputs Fan , AC , Vent 1 , Vent 2 */
double fan = output->data.f[0];
double ac = output->data.f[1];
double vent1 = output->data.f[2];
double vent2 = output->data.f[3];
ESP_LOGI("TENSOR SETUP", "fan = %lf", fan);
ESP_LOGI("TENSOR SETUP", "ac = %lf", ac);
ESP_LOGI("TENSOR SETUP", "vent1 = %lf", vent1);
ESP_LOGI("TENSOR SETUP", "vent2 = %lf", vent2);
}
The model seems to load ok as the dimensions and sizes are correct. But the output is always the same 4 values
fan = 0.0087
ac = 0.54
vent1 = 0.73
vent2 = 0.32
Any idea on what can be going wrong? Is it something about my model or am I just not using the model correctly in my c++ application?
Solution
I have found the issue and the answer.
It was not the C++ code, it was the model. Originally, I made my model with 3 hidden layers of 64, 20, and 8 (I am new to ML so I was only playing with random values) and it was giving me the issue.
To solve it I just changed the hidden layers to 32, 16, and 8 and the C++ code was outputting right values.
Answered By - Farynx
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.