Issue
I am new python, pytorch and machine learning.I am trying to understand ANN example with my dataset. I am trying to normalize the input and output tensor. My input tensor is :
conts_total[:5]
tensor([[ 1.0000, 13.0000, 8.0000, 7.0000, 7.0000, 0.3171, 0.4800, 0.0000,
0.0000, 0.0000, 0.1148, 1.0000, 0.0000],
[ 3.0000, 16.0000, 8.0000, 3.0000, 9.0000, 0.4634, 0.4200, 0.0000,
0.0000, 0.0000, 0.0820, 0.0000, 1.0000],
[ 4.0000, 4.0000, 5.0000, 11.0000, 11.0000, 0.6829, 0.4400, 0.0000,
0.0000, 0.0000, 0.0656, 0.0000, 0.0000],
[ 5.0000, 13.0000, 4.0000, 17.0000, 17.0000, 0.6829, 0.5800, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 1.0000],
[ 7.0000, 11.0000, 5.0000, 10.0000, 10.0000, 0.7317, 0.7000, 0.0000,
0.0000, 0.0000, 0.2623, 2.0000, 0.0000]])
The shape of the input tensor is:
conts_total.shape
torch.Size([20453, 13])
When I normalize the conts_total using the below formula:
model_input = (conts_total-conts_total.min())/(conts_total.max()-conts_total.min())
model_input[:5]
The result I get it as follows:
tensor([[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan],
[nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan]])
It would be great help if someone can guide with normalization.
** Edit **
conts_total.min()
tensor(nan)
conts_total.max()
tensor(nan)
Solution
High probability that the input data itself has some nans, please check using:
torch.isnan(tensor_name).any()
Answered By - Shiva
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.