Issue
I want to train an SSD detector on a custom dataset of N by N images. So I dug into Tensorflow object detection API and found a pretrained model of SSD300x300 on COCO based on MobileNet v2.
When looking at the config file used for training: the field anchor_generator looks like this: (which follows the paper)
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.9
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.33
}
}
When looking at SSD anchor generator proto am I correct in assuming that therefore: base_anchor_height=base_anchor_width=1
?
If yes I assume the resulting anchors one gets are by reading Multiple Grid anchors generator (if the image is a 300x300 square ) are:
of size ranging from 0.2 * 300=60 * 60
pixels to 0.9 * 300=270 * 270
pixels (with different aspect ratios) ?
Hence if one wanted to train on NxN images by fixing the field:
fixed_shape_resizer {
height: N
width: N
}
He would get using the same config file anchors ranging from (0.2 * N, 0.2 * N)
pixels to (0.9 * N, 0.9 * N)
pixels (with different aspect ratios)?
I did a lot of assuming because the code is hard to grasp and there seems to be close to no doc yet. Am I correct? Is there an easy way to visualize the anchors used without training a model?
Solution
Here are some functions which can be used to generate and visualize the anchor box coordinates without training the model. All we are doing here is calling the relevant operations which are used in the graph during training/inference.
First, we need to know what is the resolution (shape) of the feature maps which make up our object detection layers for an input image of a given size.
import tensorflow as tf
from object_detection.anchor_generators.multiple_grid_anchor_generator import create_ssd_anchors
from object_detection.models.ssd_mobilenet_v2_feature_extractor_test import SsdMobilenetV2FeatureExtractorTest
def get_feature_map_shapes(image_height, image_width):
"""
:param image_height: height in pixels
:param image_width: width in pixels
:returns: list of tuples containing feature map resolutions
"""
feature_extractor = SsdMobilenetV2FeatureExtractorTest()._create_feature_extractor(
depth_multiplier=1,
pad_to_multiple=1,
)
image_batch_tensor = tf.zeros([1, image_height, image_width, 1])
return [tuple(feature_map.get_shape().as_list()[1:3])
for feature_map in feature_extractor.extract_features(image_batch_tensor)]
This will return a list of feature map shapes, for example [(19,19), (10,10), (5,5), (3,3), (2,2), (1,1)]
which you can pass to a second function which returns the coordinates of the anchor boxes.
def get_feature_map_anchor_boxes(feature_map_shape_list, **anchor_kwargs):
"""
:param feature_map_shape_list: list of tuples containing feature map resolutions
:returns: dict with feature map shape tuple as key and list of [ymin, xmin, ymax, xmax] box co-ordinates
"""
anchor_generator = create_ssd_anchors(**anchor_kwargs)
anchor_box_lists = anchor_generator.generate(feature_map_shape_list)
feature_map_boxes = {}
with tf.Session() as sess:
for shape, box_list in zip(feature_map_shape_list, anchor_box_lists):
feature_map_boxes[shape] = sess.run(box_list.data['boxes'])
return feature_map_boxes
In your example you can call it like this:
boxes = get_feature_map_boxes(
min_scale=0.2,
max_scale=0.9,
feature_map_shape_list=get_feature_map_shapes(300, 300)
)
You do not need to specify the aspect ratios as the ones in your config are identical to the defaults of create_ssd_anchors
.
Lastly, we plot the anchor boxes on a grid that reflects the resolution of a given layer. Note that the coordinates of the anchor boxes and prediction boxes from the model are normalized between 0 and 1.
def draw_boxes(boxes, figsize, nrows, ncols, grid=(0,0)):
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize)
for ax, box in zip(axes.flat, boxes):
ymin, xmin, ymax, xmax = box
ax.add_patch(patches.Rectangle((xmin, ymin), xmax-xmin, ymax-ymin,
fill=False, edgecolor='red', lw=2))
# add gridlines to represent feature map cells
ax.set_xticks(np.linspace(0, 1, grid[0] + 1), minor=True)
ax.set_yticks(np.linspace(0, 1, grid[1] + 1), minor=True)
ax.grid(True, which='minor', axis='both')
fig.tight_layout()
return fig
If we were to take the fourth layer which has a 3x3 feature map as an example
draw_boxes(feature_map_boxes[(3,3)], figsize=(12,16), nrows=9, ncols=6, grid=(3,3))
In the image above each row represents a different cell in the 3x3 feature map, whilst each column represents a specific aspect ratio.
Your initial assumptions were correct, for example, the anchor box with aspect 1.0 in the highest layer (with lowest resolution feature map) will have a height/width equal to 0.9 of the input image size, whilst those in the lowest layer will have a height/width equal to 0.2 of the input image size. The anchor sizes of the layers in the middle are linearly interpolated between those limits.
However, there are a few subtleties regarding the TensorFlow anchor generation that are worth being aware of:
- Note in the image example we have 6 anchors per grid cell, but we only specify 5 aspect ratios. This is because an additional anchor is added for each layer which has a size mid-way between the anchor size of the current layer and the anchor size of the next layer. This can be modified (or removed) by using the
interpolated_scale_aspect_ratio
parameter in anchor_kwargs above, or likewise in your config. - By default the list of pre-specified aspect ratios are ignored in the lowest layer of your object detection feature maps (with the finest resolution), and replaced with just 3 aspect ratios. This can be overridden with the
reduce_boxes_in_lowest_layer
boolean parameter. - As you correctly pointed out, by default
base_anchor_height = base_anchor_width = 1
. However, if your input image was not square and was reshaped during pre-processing, then a "square" anchor with aspect 1.0 will not actually be optimized for anchoring objects which were square in the original image (although of course, it can learn to predict these shapes during training).
The full gist can be found here.
Answered By - macloudy
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.