Issue
I have an image that I am displaying with imshow. Then I add all the rows and show maximum values. I do the same for the columns. On the display plot, I would like to make the x and y axis of the image coincide with the x axis of the addition of columns and the y axis with the adition of rows. However, despite setting sharex
and sharey
respectively, it just doesnt seem to work. I would I just seem to be able to do one at a time:
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import argrelextrema
import matplotlib.animation as animation
fig= plt.figure()
gs= fig.add_gridspec(2,2, height_ratios=[1, 0.1], width_ratios=[1, 0.1], hspace=0, wspace=0)
ax1= fig.add_subplot(gs[0,0])
ax2= fig.add_subplot(gs[1,0], sharex=ax1)
ax3= fig.add_subplot(gs[0,1], sharey=ax1)
frameNumber= 10
imgs= []
for i in range(frameNumber):
np.random.seed(i)
randomImage= np.random.random((5,5))
sumX= np.sum(randomImage, axis=0)
sumY= np.sum(randomImage, axis=1)
dataRange= np.arange(len(sumX))
randomDataSet= np.random.random((10))
randomMaximalX= argrelextrema(sumX, np.greater)
randomMaximalY= argrelextrema(sumY, np.greater)
img1= ax1.imshow(randomImage, animated=True)
img2= ax2.plot(dataRange, sumX,animated=True)[0]
img3= ax3.plot(sumY,dataRange,animated=True)[0]
img4= ax2.vlines(x=randomMaximalX, ymin=0, ymax=5, animated=True, linestyles="dashed")
img5= ax3.hlines(y=randomMaximalY, xmin=0, xmax=5, animated=True, linestyles="dashed")
imgs.append([img1, img2, img3, img4, img5])
ani= animation.ArtistAnimation(fig, imgs, interval=1000, blit=False)
plt.show()
The current result is this:
And indeally I want something like this:
where H is the same value for both plots. Many thanks!
Solution
There are two ways you can approach this problem:
- Use
Axes.pcolormesh
instead ofAxes.imshow
- OR update the aspect ratios of the adjacent plots.
① Axes.pcolormesh
Axes.pcolormesh
does not force the resultant image to be square (1:1 aspect ratio), so your cells will be rectangular but they'll appropriately fill the space provided.
from numpy.random import default_rng
import matplotlib.pyplot as plt
rng = default_rng(0)
image = rng.uniform(1, 10, size=(5, 5))
mosaic = [
['main', 'right'],
['bottom', '.' ],
]
fig, axd = plt.subplot_mosaic(
mosaic,
gridspec_kw={
'height_ratios': [1, .1], 'width_ratios': [1, .1],
'wspace': .05, 'hspace': .05,
},
sharex=True,
sharey=True,
)
axd['main'].pcolormesh(image)
plt.show()
② Aspect Updating
If you want to stick with Axes.imshow
, then you'll need to adjust the
aspect ratios of each plot manually. To get the correct ratios, you'll need
to calculate from the supplied height_ratio
and width_ratio
fed into the GridSpec
from numpy.random import default_rng
import matplotlib.pyplot as plt
rng = default_rng(0)
image = rng.uniform(1, 10, size=(5, 5))
mosaic = [
['main', 'right'],
['bottom', '.' ],
]
fig, axd = plt.subplot_mosaic(
mosaic,
sharex=True,
sharey=True,
gridspec_kw={
'height_ratios': [1, .1], 'width_ratios': [1, .1],
# change values to move adjacent plots closer to the main
'wspace': .05, 'hspace': .05,
},
)
axd['main'].imshow(image)
axd['main'].set_anchor('SE') # move main plot to bottom-right of bounding-box
# calculate the width and height scales
gs = axd['main'].get_gridspec() # you can also save these values from your `gridspec_kw`
width_scale = gs.get_width_ratios()[0] / gs.get_width_ratios()[1]
height_scale = gs.get_height_ratios()[0] / gs.get_height_ratios()[1]
# update the aspect ratios of the adjacent plots
# set their anchors so they correctly align with the main plot
axd['right'].set_aspect(width_scale, anchor='SW')
axd['bottom'].set_aspect(1/height_scale, anchor='NE')
plt.show()
Answered By - Cameron Riddell
0 comments:
Post a Comment
Note: Only a member of this blog may post a comment.